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The light spectrum varies with the altitude of the sun and shows different light colors in
clear water. In this study, we aimed to investigate the response of juvenile steelhead trout
Oncorhynchus mykiss (34.67 ± 2.69 g initial weight) under different light color conditions.
The effects of different blue and red light combinations on plasma biochemical
parameters, digestive enzyme activity, and RNA/DNA ratio were assessed in trout over
16 weeks. Six treatments were randomly assigned to 24 tanks with four replicates per
treatment: a constant light intensity of 150 lx: 12 h white light then 12 h dark (12W); 12 h
blue light then 12 h dark (12B); 12 h red light then 12 h dark (12R); 1.5 h blue light, 9 h red
light, 1.5 h blue light, then 12 h dark (3B9R); 3 h blue light, 6 h red light, 3 h blue light, then
12 h dark (6B6R); and 12 h of both blue and red light then 12 h dark (T12BR). Fish
exposed to the 3B9R light environment showed significantly increased plasma levels of
total protein (TP), enhanced activities of midgut lipase, trypsin, and gastric lipase; and
increased RNA content in the liver and muscle tissue to promote protein synthesis
efficiency, thereby improving digestive and anabolic performance compared to fish in the
other treatments. This indicates that steelhead trout have adapted well to such variable
light conditions during long-term evolution. In contrast, trout exposed to the 6B6R light
environment showed significant reductions in plasma glucose, TP, and triglyceride levels,
decreased activity of gastrointestinal digestive enzymes, and reduced protein synthesis
capacity in the muscle and liver, resulting in weakened digestive and anabolic
in.org May 2022 | Volume 9 | Article 8533271
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performance. Furthermore, despite the high RNA content and RNA/DNA ratio in fish
exposed to a 12R light environment, relatively high plasma cholesterol and triglycerides
levels were observed, which might indicate oxidative stress. Therefore, this light is not
considered suitable for long-term cultivation. In conclusion, the 3B9R treatment was the
optimal light condition tested and can be used to improve the digestive and anabolic
performance of steelhead trout.
Keywords: anabolism, blue and red light color combination, digestive enzyme, RNA/DNA ratio, plasma
biochemistry, steelhead trout
INTRODUCTION

Fish growth is influenced by a combination of exogenous
environmental factors and genetic background (Taylor et al.,
2006). Light is a vital environmental factor that plays a central
role, with light intensity (quantity), photoperiod (duration), and
light color (spectrum) affecting the physiological indicators of
digestion and metabolism in fish (Villamizar et al., 2011; Zhang
et al., 2020a). Light can stimulate the visual organs of fish to
produce certain biological information and can influence their
physiological and biochemical characteristics by regulating the
central nervous and endocrine systems (Ruchin, 2021).

Previous studies have shown that light intensity and photoperiod
have significant effects on the digestive and anabolic performance of
fish. For example, in groupers (Epinephelus coioides), a light
intensity of 320–1150 lx significantly increased total protease,
amylase, and lipase activities in the liver, stomach, and intestine,
and decreased plasma cortisol levels (Wang et al., 2013; Wang et al.,
2015). In contrast, Tian et al. (2015) reported that a light intensity
above 400 lx could significantly increase plasma cortisol levels in
blunt snout bream (Megalobrama amblycephala). Shan et al. (2008)
found that an 18L:6D photoperiod could enhance the lipase activity
of miiuy croaker (Miichthys miiuy). Similarly, Wei et al. (2019)
showed that long photoperiods (> 16 h/day) could improve
lipometabolism as well as increase plasma triglyceride and non-
esterified fatty acid content in gibel carp (Carassius auratus).
However, Li et al. (2021) found that the 24L:0D condition could
significantly inhibit digestive enzyme activity in European sea bass
(Dicentrarchus labrax L.).

Light color also has a significant effect on the digestive and
anabolic performance of fish. Under blue and green light
environments, accelerated digestive and anabolic performance
has been reported for several species, including goldfish
(Carassius auratus) (Noureldin et al. , 2021), turbot
(Scophthalmus maximus) (Wu et al., 2021), spotted halibut
(Trachinotus blochii) (Mapunda et al., 2021), and olive
flounder (Paralichthys olivaceus) (Zou et al., 2022). Conversely,
red light environments can enhance the anabolic performance of
fish, such as pikeperch (Sander lucioperca) (Baekelandt et al.,
2019) and yellow perch (Perca flavescens) (Head and Malison,
2000). However, most studies have focused on the effect of a
single light color on fish physiological and biochemical
characteristics, whereas limited information is available
regarding the influences of light color combinations on fish
digestive and metabolic performance.
in.org 2
Based on our unpublished data, we found that red light color can
be beneficial in improving the growth performance of steelhead
trout, while blue light color can improve their immune
performance. Generally, the growth and immune performance of
fish may be cooperative. This phenomenon indicated that single
light color may not be suitable for rearing steelhead trout. The
altitude of the sun changes throughout the day, and the path length
and spectral composition (light color) of light reaching a particular
water layer vary with time (Wetzel, 1983; Ruchin, 2021). The light
color within a given water layer tends to change from blue to red to
blue over time. However, the effects of changes in underwater light
color on the physiological and biochemical characteristics of fish
remain unclear. Presumably, fish have acclimatized to changing
light color environments as a result of long-term evolution.
Providing farmed fish with a changing light color environment
similar to that experienced in nature may be more conducive to
their digestive and anabolic performance. To explore the
physiological and ecological responses of juvenile steelhead trout
to light color variation, we investigated the influence of various blue
and red light combinations on plasma biochemical parameters,
digestive enzyme activity, and muscle and liver RNA and DNA
content to identify suitable light color environments.
MATERIALS AND METHODS

Source and Acclimation of Fish
Triploid steelhead trout eyed eggs were purchased from
Troutlodge, Inc. (Washington, USA). Prior to the experiments,
the juvenile trout were acclimatized to a brackish saltwater
environment (salinity: 14.2 ± 0.7) for 2 weeks. Fish were fed to
apparent satiation twice daily at 08:00 and 18:30 with a
commercial trout feed (Greatseven Inc., Qingdao, China) and
maintained on 24 h oxygen supply and 12L:12D photoperiod.

Trial Design
For light evaluation, we utilized the mean light intensity values
measured at the surface, middle, and bottom water layers as a
baseline and established six light color treatments for 150 lx light
intensity (12R, 12B, 12W, 3B9R, 6B6R, and T12BR). The light
intensity was changed by adjusting the height of the light to the
water surface. The light color regimes for the six treatments are
listed in Table 1. The spectra of white light (full spectrum), blue
light (peak at 454.9 nm), red light (peak at 614.8 nm), and mixed
blue and red light (peaks at 454.9 nm and 614.8 nm, respectively)
May 2022 | Volume 9 | Article 853327
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are shown in Figure 1. For all treatments, the photoperiod was a
12L:12D cycle (light period: 07:30 to 19:30). The light intensity and
spectra were determined using a handheld illuminometer (PLA-
300; Everfine Inc., Hangzhou, China). A packaged LED (COB) was
used, which was designed and produced by Qingdao Lanchi
Technology Company. The 16-week trial was based on a
completely randomized block design with four replicates per
treatment and with each replicate group comprising 20 fish per
tank (380 L volume, 0.72 m height × 0.95 m diameter; white
background color). Each tank was covered with a black light-
absorbing cloth to prevent light contamination between treatments.

At the beginning and end of the trial, feeding was suspended
for 36 h to ensure that the digestive tracts of the fish were empty.
Prior to commencing the trial, the fish were anesthetized by
immersion in a 30 mg/L tricaine methanesulfonate (MS-222;
Sigma-Aldrich, USA) solution, after which they were gently
blotted dry with tissue and weighed. During the culture period,
all trout (initial weight, 34.67 ± 2.69 g) were fed twice daily (at
08:00 and 18:30) with commercial trout feed. Residual
unconsumed feed was collected after feeding for 30 min, and
the daily feed intake was calculated by measuring the feed
Frontiers in Marine Science | www.frontiersin.org 3
moisture content and correcting the feed intake for leaching.
Water was renewed using a single-flow system at a water flow
rate of 1.15 L/min. Water temperature, salinity, dissolved oxygen
content, and pH were monitored three times daily using a YSI
ProPlus handheld multiparameter meter (YSI Inc., Ohio, USA).
Water samples were collected at 3-day intervals, and the total
ammonia nitrogen (TAN), phosphate, nitrite nitrogen, and
nitrate nitrogen concentrations were analyzed using a
Cleverchem 380 automatic chemical analyzer (DeChem-Tech
Inc., Hamburg, Germany).

During the culture period, values for the water quality
parameters (mean ± standard deviation), temperature, salinity,
dissolved oxygen, pH, TAN, phosphate, nitrite nitrogen, and
nitrate nitrogen were maintained at 16.5 ± 0.2°C, 14.2 ± 0.7, 8.7 ±
0.3 mg/L, 7.3 ± 0.1, at 0.03 ± 0.03 mg N/L, 0.11 ± 0.08 mg P/L,
0.09 ± 0.05 mg N/L, and 3.43 ± 1.9 mg N/L, respectively.

At 4-week intervals, the fish in each tank were treated with 30
mg/L tricaine MS-222, counted, and weighed. At the end of the
trial, the final weights of steelhead trout in the 12W, 12R, 12B,
3B9R, 6B6R, and T12BR groups were 277.32 ± 6.23, 278.24 ±
4.89, 294.13 ± 13.20, 295.74 ± 5.61, 264.78 ± 4.86, and 283.10 ±
A B

D

C

FIGURE 1 | Relative spectral composition of blue light (A), red light (B), mixed blue and red light (C), and white light (D).
TABLE 1 | Experimental design per time point for six light color conditions.

Treatment 7:30–9:00 9:00–10:30 10:30–16:30 16:30–18:00 18:00–19:30

12W 12 h white light (150 lx)
12B 12 h blue light (150 lx)
12R 12 h red light (150 lx)
3B9R blue light (150lx) red light (150 lx) red light (150 lx) red light (150 lx) blue light (150 lx)
6B6R blue light (150 lx) blue light (150 lx) red light (150 lx) blue light (150 lx) blue light (150 lx)
T12BR Total 12 h mixed blue light (75 lx) and red light (75 lx) for 150 lx light intensity
May 2022 | Volume 9
12Wmeans 12 h white light then 12 h dark; 12B means 12 h blue light then 12 h dark; 12R means 12 h red light then 12 h dark; 3B9Rmeans 1.5 h blue light + 9 h red light + 1.5 h blue light
then 12 h dark; 6B6R means 3 h blue light + 6 h red light + 3 h blue light then 12 h dark; T12BR means a total of 12 h of mixed blue light and red light then 12 h dark.
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16.90 g, respectively. The 3B9R group had the highest final
weight, which was significantly higher than that of the 6B6R
group. The average daily intake of all groups was 2.26 ± 0.09 g,
and no significant differences were found among the groups. At
the time of sampling, three fish were randomly selected from
each tank and immediately anesthetized with 100 mg/L MS-222.
The midgut, stomach, liver, and muscle tissues were immediately
collected and frozen in liquid nitrogen. Blood samples were
collected in heparin sodium anticoagulant EP tubes,
centrifuged at 10,000 r/min (4°C) for 10 min to separate
plasma, and immediately placed in liquid nitrogen. All samples
were then transferred to a −80°C ultra-low temperature freezer
for preservation.

Digestive Enzyme Activity Analyses
After being accurately weighed, midgut and stomach tissues were
placed in pre-chilled saline at a weight (g): volume (mL) ratio of
1:9 and homogenized using an automatic freezer mill grinder
(Jingxin Industrial Development Inc., Shanghai, China). The
tissue homogenate solutions were centrifuged at 3,500 r/min
and 4°C for 10 min, and the resulting supernatants were collected
for analysis. The commercially available kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China; A045-4-2, A054-2-1,
C016-1-1, A080-2-2, and A080-1-1) were used to determine the
total protein content and the activities of lipase, amylase, trypsin,
and pepsin in tissues. The total protein content, lipase and
amylase activity, and trypsin and pepsin activity were
determined as described by Wang et al. (2021b), Lu et al.
(2020), and Zhang et al. (2020b), respectively. The
determination process was strictly based on the instructions,
and absorbance values of total protein content, lipase, amylase,
trypsin, and pepsin were measured at 562, 580, 660, 253, and 660
nm, respectively, using a microplate reader (Synergy2; BioTek
Inc., USA) and a UV spectrophotometer (UV-5100; Shanghai
Metash Instruments Co., Ltd, Shanghai, China). The lipase
activity was presented as units per gram of protein; the
activities of amylase, trypsin, and pepsin were presented as
units per milligram of protein.

Plasma Biochemical Analyses
Plasma levels of glucose (Glu), total protein (TP), triglyceride
(TG), and total cholesterol (TC) were determined using a Cobas
C-311 automatic biochemical analyzer (Roche/Hitachi Inc.,
Basel, Switzerland). All commercial kits were obtained from
Roche, Inc. (Basel, Switzerland).

RNA and DNA Extractions
Total RNA was extracted from muscle and liver tissue samples
using a UNIQ-10 TRIzol Total RNA Extraction kit (Sangon Inc.,
Shanghai, China), and DNA was extracted using a marine animal
tissue genomic DNA extraction kit (Tiangen Inc., Beijing, China).
RNA and DNA concentrations were measured at 260 nm using a
microspectrophotometer (Nano-300, Allsheng Inc., Hangzhou,
China). Purity of the sample was confirmed by determining the
OD260/280 nm absorption ratio. The OD260/280 values for muscle
tissue RNA and DNA were 1.96 ± 0.03 and 1.84 ± 0.02,
respectively. The OD260/280 values for liver tissue RNA and
Frontiers in Marine Science | www.frontiersin.org 4
DNA were 1.96 ± 0.03 and 1.83 ± 0.02, respectively. All samples
showed OD260/280 readings between 1.8 and 2.0 for both RNA
and DNA.

Statistical Analysis
All data were analyzed using SAS version 9.4 (SAS Institute Inc.,
Cary, North Carolina, USA). The normal distribution and
homogeneity of variance of the data were initially assessed using
the Shapiro–Wilk and Levene tests, respectively. Normally
distributed homogeneous data were analyzed using one-way
analysis of variance (ANOVA), with mean values compared
using Tukey’s multiple comparison tests. For analysis of non-
normally distributed data, we applied the non-parametric Mann–
Whitney rank sum test and Kruskal–Wallis ANOVA of ranks. The
results are expressed as the mean ± standard deviation, with
differences considered significant at P < 0.05.

Ethics Approval Statement
All procedures were performed under the Regulations of the
Administration of Affairs Concerning Experimental Animals of
China, as well as the Regulations of the Administration of Affairs
Concerning Experimental Animals of Shandong Province.
RESULTS

Digestive Enzyme Activity
Digestive enzyme activity data obtained in juvenile steelhead
trout are summarized in Figure 2. Midgut lipase and trypsin
levels were significantly higher in the 3B9R and 12R groups than
in the 6B6R group (P < 0.05). Furthermore, the midgut and
gastric lipase activities showed similar trends. The 3B9R and 12R
groups had significantly higher lipase activities than the other
groups (P < 0.05). However, no significant differences were
observed in the amylase (midgut and gastric) or pepsin levels
among the groups (P > 0.05).

Plasma Biochemistry
Results obtained for the plasma Glu, TP, TG, and TC levels are
presented in Figure 3. Glu levels in trout in the 6B6R group were
significantly lower than those in the other groups (P < 0.05). The
highest levels of TP were detected in the 3B9R group, which were
significantly higher than the levels recorded in the 12W and
6B6R groups (P < 0.05). The TG levels in the 12R group were
significantly higher than those in the 12W group (P < 0.05). The
highest levels of TC were detected in the 12R group, which were
significantly higher than those in the other groups (P < 0.05),
whereas the levels of TC in the 12W and 6B6R groups were
significantly lower than those in the other groups (P < 0.05).

RNA/DNA Content and Ratio
Data relating to the muscle and liver RNA/DNA content and ratios
of juvenile steelhead trout are presented in Table 2. The muscle
RNA content in the 3B9R group was significantly higher than that
in the 12W, 12B, and 6B6R groups (P < 0.05). Interestingly, the
muscle RNA/DNA ratio showed a similar trend to the muscle RNA
content, with the 3B9R group having significantly higher values
May 2022 | Volume 9 | Article 853327
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A B

DC

FIGURE 3 | Plasma enzyme levels of Glu (glucose, A), TP (total protein, B), TG (triglycerides, C), and TC (total cholesterol, D) in juvenile steelhead trout reared under
different light color conditions. Different capital letters denote significant differences among the steelhead trout treatments. Results are expressed as the mean ±
standard deviation (n = 12).
A B

D

E F

C

FIGURE 2 | Digestive enzyme activities of the midgut and stomach in juvenile steelhead trout reared under different light color conditions. (A) Amylase activity in the
midgut; (B) amylase activity in the stomach; (C) lipase activity in the midgut; (D) lipase activity in the stomach; (E) trypsin activity in the midgut; (F) pepsin activity in the
stomach. Different capital letters denote significant differences among the steelhead trout treatments. Results are expressed as mean ± standard deviation (n=12).
Frontiers in Marine Science | www.frontiersin.org May 2022 | Volume 9 | Article 8533275
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than the T12BR, 12W, 12B, and 6B6R groups (P < 0.05). The lowest
liver RNA content was detected in the 6B6R group, which was
significantly lower than that recorded for the 12R, 3B9R, T12BR,
and 12B groups (P < 0.05). In addition, the liver RNA/DNA ratio
was significantly higher in the 12R and 3B9R groups than that in the
12B, 12W, and 6B6R groups (P < 0.05). However, no significant
differences in muscle and liver DNA content were observed among
the groups (P > 0.05).
DISCUSSION

The altitude of the sun considerably influences the light color
composition in the water. In the morning and evening, because
of the low altitude of the sun and the long path length of the
incident light, red light is quickly absorbed after entering the
water, thus increasing the proportion of blue light in the water.
At noon, the incident light path is shorter, increasing the
proportion of red light in the water. Therefore, the light color
tends to exhibit a blue-red-blue variation in the water during
the daytime (Wetzel, 1983; Ruchin, 2021). This light color
variation in the water is similar to that observed in the 3B9R
light environment in the current study. In the 3B9R light
environment, TP levels, digestive enzyme activity, muscle/
liver RNA content, and RNA/DNA ratio in trout significantly
increased compared other light environments, implying that
the digestive and anabolic performance was significantly
improved under 3B9R light environment. These findings
indicate that trout can adapt to variations in the daily rhythm
of light conditions during their long-term natural evolution.

Our results showed that the combination of blue and red light
was more effective than single light in improving the digestive
and anabolic performance in steelhead trout. However,
information on the effects of the combination of blue and red
light colors in trout is limited. Our findings are similar to those
reported by Karakatsouli et al. (2008), who found that red light
was beneficial in increasing the anabolic level of rainbow trout
(Oncorhynchus mykiss), and Guller et al. (2020), who found that
blue light can enhance the antioxidant enzyme synthesis of
rainbow trout. In contrast, Karakatsouli et al. (2007)
documented that blue light can inhibit anabolism and reduce
the stress response. Therefore, responses to colored light may
vary depending on the species, life stage, and size-class.
Frontiers in Marine Science | www.frontiersin.org 6
Digestive enzyme activity is a vital indicator of the maturity
and function of the digestive system in fish (Fang et al., 2019;
Pérez-Sirkin et al., 2020). Digestive enzyme activity is closely
related to fish feeding habits and is influenced by
environmental factors (Castro-Ruiz et al., 2019; Yu et al.,
2020; Yan et al., 2021). In the present study, the lipase
activity of the 3B9R group was significantly higher than that
of the 6B6R group (Figure 2), whereas no significant difference
in amylase activity was observed. This difference may be
explained by the fact that steelhead trout is a carnivorous fish
and its lipase activity is susceptible to light color. Furné et al.
(2005) reported higher lipase activity in carnivorous fish,
whereas higher amylase activity was observed in herbivorous
and omnivorous fish. In a recent study on spotted sea bass
(Lateolabrax maculatus), Hou et al. (2019) found that exposure
to blue light could significantly increase digestive enzyme
activity. Our results indicate that trout can adapt to variable
blue-red-blue light environments during long-term natural
evolution. Hence, a suitable light environment can promote
the development of the digestive system, as well as the
gastrointestinal digestion and absorption capacity of trout,
ultimately improving the digestive performance.

Blood functions as a mediator of metabolism and nutrient
transport in fish and is widely used to evaluate physiological
health, digestion capacity, and anabolic performance (Giri
et al., 2018; Chen et al., 2021; Huang et al., 2021). The
biochemical characteristics of fish blood can exhibit
marked variations in response to environmental changes
(Wang et al., 2021a).

In the current study, plasma Glu levels were significantly
lower in steelhead trout exposed to the 6B6R light environment
than in those exposed to other light environments (Figure 3).
We suspect that this can represent oxidative stress in the liver of
trout caused by the 6B6R light environment, which influences
anabolic performance. Glu is mainly synthesized in the liver.
When the liver is exposed to oxidative stress, its synthetic
capacity is diminished, resulting in decreased Glu levels
(Ogueji et al., 2020). Glu is produced by ATP through aerobic
oxidation or glycolysis pathways, providing energy resources for
tissues such as the liver, muscle, and gastrointestinal tract. Lower
levels of Glu can result in a decreased availability of energy
resources for the organism, affecting the anabolic efficiency of
other tissues in fish (Feng et al., 2022).
TABLE 2 | RNA, DNA, and RNA/DNA ratio in the muscle and liver of steelhead trout reared under different light color conditions.

Treatment 12W 12B 12R 3B9R 6B6R T12BR P value

Muscle (ug/ml)
RNA 0.81 ± 0.05bc 0.72 ± 0.06cd 1.00 ± 0.13ab 1.04 ± 0.12a 0.58 ± 0.08d 0.85 ± 0.11abc <0.0001
DNA 0.21 ± 0.02 0.19 ± 0.02 0.22 ± 0.03 0.21 ± 0.02 0.23 ± 0.04 0.21 ± 0.03 0.4939
RNA/DNA 3.81 ± 0.11c 3.79 ± 0.12c 4.54 ± 0.12ab 4.84 ± 0.18a 2.56 ± 0.40d 4.12 ± 0.43bc <0.0001
Liver (ug/ml)
RNA 5.50 ± 0.38ab 5.64 ± 0.18a 6.45 ± 0.41a 6.36 ± 0.65a 4.35 ± 0.94b 5.64 ± 0.30a 0.0004
DNA 0.96 ± 0.05 0.96 ± 0.02 0.95 ± 0.07 0.94 ± 0.08 1.00 ± 0.10 0.94 ± 0.05 0.7967
RNA/DNA 5.76 ± 0.35b 5.84 ± 0.11b 6.81 ± 0.15a 6.80 ± 0.66a 4.3 ± 0.55c 6.02 ± 0.44ab <0.0001
May 2
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Values (mean ± standard deviation) are expressed as the means of four replicates. Values on the same line with different superscript letters are significantly different (P < 0.05) based on
one-way analysis of variance (ANOVA) with Tukey’s test.
853327

https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Chen et al. Light Color Combinations Affect Trout
Our findings revealed that the TP levels in the plasma of
steelhead trout in the 3B9R group were significantly higher than
those in the 6B6R group (Figure 3). This may be because the
6B6R light environment caused oxidative stress in the liver,
leading to lower plasma TP levels. TP is synthesized in the
liver and plasma cells of the reticuloendothelial system and its
protein synthesis capacity decreases when the liver is exposed to
oxidative stress (Afshari et al., 2021). Similarly, Refaey and Li
(2018) observed a reduced TP synthesis capacity in the liver of
channel catfish (Ictalurus punctatus) when subjected to oxidative
stress. TP can supply energy to the body via gluconeogenesis
(Yang et al., 2020) and can indirectly reflect the anabolic
performance of the body (Afshari et al., 2021). Our findings
showed that the anabolic performance of the 6B6R group was
weakened because of a decrease in the efficiency of nutrient
transport and metabolism caused by a reduction in TP levels.

Our results showed that TG and TC levels were significantly
higher in the 12R group of steelhead trout than in other groups
(Figure 3), possibly because of the long-term participation in
high-intensity anabolism of the liver, leading to overload or
oxidative stress caused by this light environment. TG and TC are
important components of blood lipids and are mainly
synthesized in the liver (Su et al., 2022). Variations in blood
lipid levels are closely related to the metabolic and physiological
status of fish, and changes in their content can reflect the level of
lipid metabolism (Qiang et al., 2018; Jia et al., 2021). As an
important biomarker, TC levels reflect liver health (Farag et al.,
2022). During oxidative stress, the digestive performance and cell
membrane function are inhibited (Narra et al., 2017). Owing to
the reduced efficiency of TG reabsorption, a large amount of TG
accumulates in the blood, causing increased plasma TG levels.
TC is transported by high-density lipoproteins to the liver and
synthesized by bile acids. When the liver is under high load or
oxidative stress, its capacity to synthesize bile acids by TC is
reduced, which leads to elevated levels (Mertens et al., 2017; Xu
et al., 2020). Our data showed that the plasma TG and TC levels
were significantly lower in the 6B6R group than in the other
groups. This difference in the response indicates that the liver
and intestine of the 6B6R group were affected by light color, and
the liver synthesis of lipids and intestinal absorption of lipids
were inhibited, resulting in lower levels of TG and TC. TC is a
carrier of nutrients for the body; when its levels decrease, the
metabolic capacity of steelhead trout decreases. Thus, nutrients
cannot be efficiently transformed and utilized, which affects
anabolic performance.

RNA directly participates in protein synthesis, and the
metabolic rate of the body is positively correlated with the
efficiency of RNA synthesis (Kumar et al., 2018). Conversely,
the DNA content of genetic information carrier molecules
remains stable (Zehra and Khan, 2017). Consequently, the
RNA/DNA ratio, a physiological indicator of the body’s
protein synthesis capacity, can accurately reflect cell
metabolism (Sterzelecki et al., 2021). Our data showed that the
DNA content in the muscle and liver of steelhead trout was not
significantly different among treatment groups, whereas the RNA
content and the RNA/DNA ratio were significantly higher in the
Frontiers in Marine Science | www.frontiersin.org 7
3B9R group than those in the 6B6R group (Table 2). The RNA
content and RNA/DNA ratio of different tissues in each group
revealed similar trends—which may reflect differences in
anabolic performance of steelhead trout under different light
color conditions—and were positively correlated with the growth
trend of trout in our laboratory (Chen et al., unpublished data).
Similarly, a positive correlation was found between the RNA/
DNA ratio and growth trend in pearl oysters (Pinctada fucata)
(Chang et al., 2021). Studies have revealed that factors such as
feeding, temperature, and light can influence the RNA/DNA
ratio in the body (Grimm et al., 2015; Angelo et al., 2021;
Quintanilla-Ahumada et al., 2021). Kawamura et al. (2017)
reported that exposure to red light could significantly increase
the muscle RNA/DNA ratio in red sea bream (Pagrus major).
Similarly, we found that the 3B9R light environment could
enhance anabolic performance by improving the rate of RNA
synthesis in steelhead trout.

Light is a vital factor in regulating the physiological
characteristics of fish, and an optimal light environment can
contribute positively to fish welfare (Owen et al., 2009; Stien
et al., 2013; Ruchin, 2021). Our findings on digestive and
anabolic performance of trout can partially reflect fish welfare
status; however, investigating different aspects of stress response
(e.g. oxidative stress process) is important as the welfare index
has some limitations (Stien et al., 2013; Parma et al., 2020). Our
unpublished data (Chen et al.) showed that blue-red light
variation can affect trout growth. This is consistent with the
findings of previous studies, which demonstrated that fish
growth can be improved by altering the background color of
the culture tank and the light color to yield interesting results
(Papoutsoglou et al., 2000; Rotllant et al., 2003; Sotoudeh et al.,
2019; Kasagi et al., 2020; McLean, 2021; Ninwichian et al., 2022).
Overall, our study failed to comprehensively explain fish welfare,
which will need to be explored further using an overall model for
welfare indicators such as oxidative stress process, behavior, and
other aspects.
CONCLUSION

In the present study, the 3B9R light environment was beneficial
for increasing plasma TP levels and enhancing gastrointestinal
digestive enzyme activity in steelhead trout. This environment
also improved the liver and muscle protein synthesis capacity.
We conclude that 3B9R is the most favorable light environment
for improving the digestive and anabolic performance of trout.
Our results indicate that steelhead trout acclimated to variable
light conditions during long-term natural evolution. The 3B9R
group of steelhead trout had enhanced secretory synthesis
capacity through an increase in TP levels. This also improved
RNA synthesis, protein capacity, and digestive capacity. This is
the primary reason for the relatively high digestive and anabolic
performance of fish exposed to the 3B9R light environment
compared to that of fish in other light environments. In
contrast, the 6B6R light environment significantly reduced
plasma Glu, TP, and TC levels . Addit ional ly , the
May 2022 | Volume 9 | Article 853327
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gastrointestinal digestive enzyme activity was inhibited, and the
ability of the muscle and liver to synthesize protein using RNA
was reduced, resulting in decreased digestive and anabolic
performance. Despite the higher RNA content and RNA/DNA
ratio, exposure to the 12R light environment caused relatively
high levels of TG and TC in plasma, which indicates the
occurrence of oxidative stress. In summary, the 12R light
environment is considered unsuitable for long-term cultivation,
and the 3B9R light environment may be more appropriate for
rearing steelhead trout.
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Garcıá-Dávila, C., Cahu, C., et al. (2019). Ontogeny of the Digestive Enzyme
Activity of the Amazonian Pimelodid Catfish Pseudoplatystoma Punctifer
(Castelnau 1855). Aquaculture. 504, 210–218. doi: 10.1016/j.aquaculture.
2019.01.059

Chang, G., Wang, H., Wang, L., Xue, C., Zhu, C., Zhang, J., et al. (2021). RNA/
DNA Ratio to Assess the Growth Performance in Postlarvae of the Pearl Oyster
Pinctada Fucata (Gould 1850). Aquac. Rep. 19, 100600. doi: 10.1016/
j.aqrep.2021.100600

Chen, H., Liu, H., Li, R., Lin, X., Luo, H., Ji, S., et al. (2021). Blood Cell
Identification and Hematological Analysis During Natural Sex Reversal in
Rice Field Eel (Monopterus Albus). Aquaculture 538, 736543. doi: 10.1016/
j.aquaculture.2021.736543

Fang, H., Xie, J., Liao, S., Guo, T., Xie, S., Liu, Y., et al. (2019). Effects of Dietary
Inclusion of Shrimp Paste on Growth Performance, Digestive Enzymes
Activities, Antioxidant and Immunological Status and Intestinal Morphology
of Hybrid Snakehead (Channa Maculata♀ × Channa Argus♂). Front. Physiol.
10. doi: 10.3389/fphys.2019.01027

Farag, M. R., Alagawany, M., Khalil, S. R., Abd El-Aziz, R. M., Zaglool, A. W.,
Moselhy, A. A. A., et al. (2022). Effect of Parsley Essential Oil on Digestive
Enzymes, Intestinal Morphometry, Blood Chemistry and Stress-Related Genes
in Liver of Nile Tilapia Fish Exposed to Bifenthrin. Aquaculture 546, 737322.
doi: 10.1016/j.aquaculture.2021.737322

Feng, J., Liu, S., Zhu, C., Cai, Z., Cui, W., Chang, X., et al. (2022). The Effects of
Dietary Lactococcus Spp. On Growth Performance, Glucose Absorption and
Metabolism of Common Carp, Cyprinus Carpio L. Aquaculture 546, 737394.
doi: 10.1016/j.aquaculture.2021.737394
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